Mean-Lagrangian renormalization theory of inhomogeneous turbulent flow

ثبت نشده
چکیده

In nature, fluids often show stochastic and disordered behaviors both in time and space. These phenomena are inclusively called the “turbulent flows”. In various circumstances in the real world such that the Reynolds number exceeds some thousands or millions, fluid turbulence plays important roles; it promotes the mixing of the fuel and air in engines, it enhances the drag force on the surfaces of cars, ships or airplanes, it helps the oxygen to dissolve into ocean, it equalizes the temperature of the atmosphere, it diffuses the gigantic magnetic flux in the sun, interstellar gasses or galaxies. Namely, almost everywhere in our universe, there are lots of phenomena which can never be explained without appropriate knowledges about turbulence. Because of its universality and wide applicability, fluid turbulence has been the targets of various scientific fields and the disclosure of its essence should give huge impacts to wide variety of field of both pure and applied science.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Self-Energy Closure for Inhomogeneous Turbulent Flows and Subgrid Modeling

A new statistical dynamical closure theory for general inhomogeneous turbulent flows and subgrid modeling is presented. This Self-Energy (SE) closure represents all eddy interactions through nonlinear dissipation or forcing ‘self-energy’ terms in the mean-field, covariance and response function equations. This makes the renormalization of the bare dissipation and forcing, and the subgrid modeli...

متن کامل

Numerical Simulation of Scaling Effect on Bubble Dynamics in a Turbulent Flow around a Hydrofoil

A Lagrangian-Eulerian numerical scheme for the investigation of bubble motion in turbulent flow is developed. The flow is analyzed in the Eulerian reference frame while the bubble motion is simulated in the Lagrangian one. Finite volume scheme is used, and SIMPLEC algorithm is utilized for the pressure and velocity linkage. The Reynolds stresses are modeled by the RSTM model of Launder. Upwind ...

متن کامل

Lagrangi-an Pdf Methods for Turbulent Flows

Lagrangian Probability Density Function (PDF) methods have arisen the past 10 years as a union between PDF methods and stochastic Lagrangian models, similar to those that have long been used to study turbulent dispersion. The methods provide a computationally-tractable way of calculating the statistics, of inhomogeneous turbulent flows of practical importance, and are particularly attractive if...

متن کامل

Lagrangian statistics in turbulent channel flow

The Lagrangian dispersion of fluid particles in inhomogeneous turbulence is investigated by a direct numerical simulation of turbulent channel flow. Lagrangian velocity and acceleration along a particle trajectory are computed by employing several interpolation schemes. Among the schemes tested, the four-point Hermite interpolation in the homogeneous directions combined with Chebyshev polynomia...

متن کامل

Numerical computation of turbulent gas-particle flow in a 90 degree bend: comparison of two particle modelling approaches

A numerical study into the physical characteristics of dilute gasparticle flows over a square-sectioned 90◦ bend is reported. Two approaches, namely the Lagrangian particle tracking model and Eulerian two fluid model are employed to predict the gas-particle flows. Renormalization Group based kmodel is used as the turbulent closure for both the approaches; however, for the Eulerian model, additi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014